[12-11 17:00:02] 来源:http://www.tmgc8.com 试验检测 阅读:3109次
混凝土是当今使用量最大、使用面积最广的建筑材料,己普遍应用于各类建筑工程中。随着建筑技术的不断进步,对混凝土的要求也越来越高。混凝土坍落度损失是商品混凝土使用过程中经常遇到的一个问题,特别是泵送混凝土问题更加突出,已严重影响施工质量。因此,有必要对预拌混凝土坍落度的损失进行深入分析。造成混凝土坍落度损失的原因是多方面的,且这些因素相互关联。主要包括四个方面:一是水泥方面,如水泥中的矿物组分种类、不同矿物成分的含量、碱含量、细度、颗粒级配等;二是掺合料方面,如烧失量等;三是集料方面,如级配、含泥量、吸水率等;四是化学外加剂方面,如高效减水剂的化学成分、分子量、硫化程度、平衡离子浓度以及用量等;五是环境条件,如温度、湿度、运输时间等。
1 水泥对混凝土坍落度损失的影响
1.1水泥的基本组成
硅酸盐水泥熟料主要由四种氧化物组成。这四种最基本的氧化物为氧化钙(CaO)、氧化硅(SiO2)、氧化铝(Al2O3)和氧化铁(Fe2O3)。经过高温煅烧,形成硅酸三钙(3CaO·SiO2)简称为C3S;硅酸二钙(2CaO·SiO2)简称为C2S;铝酸三钙(3CaO·Al2O3)简称为C3A;铁铝酸四钙(4CaO·Al2O3·Fe2O3)简称为C4AF。
1.2各组分含量、特性及对坍落度的影响
近年来,由于煅烧条件大大改善,在硅酸盐水泥熟料中的C3S含量明显提高,含量大约为32%~64%。C3S的水化速度比C2S快,但比C3A和C4AF慢些。它是决定硅酸盐水泥强度的最主要矿物之一,它不仅影响水泥的早期强度,也影响水泥的后期强度,是决定水泥水化热的最主要矿物。C3S与水作用时,生成水化硅酸钙及氢氧化钙。其反应式为:2(3CaO·SiO2)+6H2O→3CaO·2SiO2·3H2O+3Ca(OH)2,生成的水化硅酸钙几乎不溶于水,而立即以胶体微粒析出,并逐渐聚而成为凝胶。水化硅酸钙凝胶又称托勃莫来石凝胶或称C—S—H凝胶。由它构成的网状结构具有很高的强度。在硅酸盐水泥熟料中,C2S含量大约14%~28%。它是水泥熟料中水化速度最慢,水化热最小的一种矿物,它影响水泥的后期强度,其早期强度较低。C2S与水作用时,其水化产物与C3S相同,但数量不同。其反应式为:2(2CaO·SiO2)+4H2O→3CaO·2SiO2·3H2O+Ca(OH)2。在硅酸盐水泥熟料中,C3A含量大约为2.5%~15%。这是水泥熟料矿物中水化速度最快,水化热最大的一种矿物。由于其具有水化速度很快这一特点,因此对水泥的凝结特性起着决定性作用,它对水泥强度的贡献主要在早期,对后期强度的贡献不大。C3A与水作用时,生成水化铝酸三钙。其反应式为:3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O,水化铝酸三钙为晶体,易溶于水,它在石灰饱和溶液中,能与氢氧化钙Ca(OH2)进一步反应。生成水化铝酸四钙(4CaO·Al2O3·12H2O),两者的强度都低,且耐硫酸盐腐蚀性很差。C3A对新拌浆体性能的影响表现在两个方面。一是C3A具有较好的保水性;二是C3A含量对水泥的凝结时间有较显著的影响。由于C3A水化较快,当有足够的石膏存在时,能在较短时间内生成一定数量的水化产物,形成凝聚结构(此结构称为钙钒石)。这一反应一方面结合了大量的水,使新拌浆体失去流动性,特别是当水泥中石膏含量不合适时,C3A含量高的水泥凝结更快,另一方面由于钙钒石为一种针状晶体,在外力作用下较难运动,而且易于其他颗粒交叉搭接,因此,对新拌混凝土的坍落度损失影响较大。
在硅酸盐水泥熟料中,C4AF含量大约为10%~19%。它的水化速度较快,仅次于C3A。因此,对水泥强度的贡献也主要在早期,一般来说,C4AF含量增加,水泥的水化放热量变化不大,甚至可能略有降低。但放热速率可能加快。C4AF与水作用时,生成水化铝酸三钙及水化铁酸钙凝胶,其反应式为:4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O
除了上述四组分以外,水泥熟料中还存在着其它一些成分。主要有游离CaO、MgO、SO3和碱。虽然这些组分含量很少,但对水泥和混凝土的性能有着不可忽视的影响。在水泥熟料中,游离CaO是在水泥生产过程中产生,这种游离状态的CaO可以与水反应,形成Ca(OH)2。但速度较慢,在水泥凝结硬化后产生膨胀,导致水泥体积安定性不良。在水泥熟料中,大部分MgO以固溶形态存在于熟料矿物中。但熟料矿物固溶MgO的数量是有限的。当熟料中的MgO含量较高时,部分MgO则以游离态存在于熟料矿物中,当水泥凝结后,MgO与水反应生成Mg(OH)2,也会产生膨胀,导致水泥体积安定性不良。www.tmgc8.com
在水泥熟料中,SO3主要来自水泥粉磨时掺入的石膏。SO3含量极少,水泥中SO3的含量影响着水泥与外加剂的适应性。石膏是一种传统的胶凝材料,它是以硫酸钙为主要化学成分的气硬性胶凝材料,它也是一种缓凝剂。可以调节水泥的凝结时间延长,但当石膏掺量达到一定程度后,凝结时间不仅不延长,甚至还可能缩短。尽管对石膏的缓凝作用机理说法不一,但一般认为石膏的缓凝作用是与C3A作用的结果。当C3A含量与石膏掺量都较低时,水泥浆体需要较长时间才能凝结。当C3A含量与石膏掺量都较高时,水泥浆体也能有一个正常的凝结时间。当C3A含量较高而石膏掺量较低或C3A含量较低而石膏掺量较多时水泥浆体则表现出较快的凝结。一般来说水泥凝结速度越快越容易引起混凝土较快的坍落度损失。需要注意的是石膏对水泥凝结时间的影响与石膏的状态有关,通常用二水石膏(或称生石膏)其化学式为CaSO4·2H2O作为水泥的调凝剂。也有些水泥厂采用硬石膏,其化学式为CaSO4。在水泥粉磨过程中,如果磨机温度在110℃~170℃时,二水石膏将部分脱水形成半水石膏,其反应式为:CaS04·2H2O110℃~170℃CaSO4·1/2H2O,由于半水石膏水化很快,水泥与水拌和后很快形成强度不高的二水石膏网状结构,使浆体很快变硬或失去流动性,造成假凝。
石膏又是矿渣等活性混合材的激发剂。在普通硅酸盐水泥中,通常掺入一些活性或非活性的混合材,如矿渣,石灰石等,但是,这些混合材的活性通常都是潜在的,需要在一定的条件下才能发挥出来,石膏恰恰可以激发混合材的这种潜在的活性,使其充分发挥出来。石膏是引起水泥石膨胀的重要组成部分。在水泥的水化过程中,石膏可以与水泥熟料中铝酸盐和铁铝酸盐的水化产物反应,形成钙矾石。这一反应将会产生体积膨胀。石膏掺量也是影响水泥与外加剂适应性的重要因素。在水泥熟料中,碱固溶在熟料矿物中,碱含量较高的水泥,通常水化较快。也正是这一特性,使得用高碱水泥配制的混凝土坍落度损失可能较快,水泥熟料水化时放出的碱可以与集料中的一些活性组分发生反应,产生膨胀,严重时可能导致混凝土的开裂,甚至破坏游离状态的碱,还可能与一些外加剂作用影响水泥与外加剂的适应性。
1.3细度、颗粒级配对坍落度的影响
水泥的细度也将影响混凝土坍落度的损失,在相同条件下,水泥越细,水化速度越快,造成坍落度损失也就越大。另一方面,水泥越细,水泥颗粒数量越多,在相同水灰比时水泥颗粒之间的距离也就越小,当水泥水化时,所形成的水化产物很容易将这些较小的颗粒连接起来,故而造成混凝土坍落度的损失较大。试验研究中在水泥水化过程中,3~30μm的熟料颗粒主要起强度增长作用,而大于60μm的颗粒则对强度不起作用。小于l0μm的颗粒主要起早强作用,而小于l0μm的颗粒需水量大。流动性好的水泥l0μm以下颗粒应少于10%。颗粒越细,需水量越大,早期强度越高,这必将加剧混凝土坍落度损失。
2 矿物掺合料对混凝土坍落度损失的影响
矿物掺合料对新拌混凝土的坍落度损失有着三方面的影响。一是影响胶凝材料的水化速度;二是影响水泥浆体的保水性能;三是影响水泥浆体的粘度如矿物掺合料对水有缓慢的吸附作用,缓慢吸附过程本身就是一个使液态水减少的过程,掺入这种矿物掺合料可使混凝土的坍落度损失增大。如一些烧失量较大的粉煤灰,如果是原状灰的话,所含的炭主要是在颗粒的内部,未燃尽的炭虽具有较强的吸水性,但水分从颗粒表面到达炭粒表面需要一定的时间。固此,可能表现出持续吸水现象,引起混凝土坍落度的损失。
3 集料对混凝土坍落度损失的影响
1.3集料有害杂质对混凝土坍落度损失的影响
集料中的有害杂质有三类:
(1)妨碍水泥水化的物质;
(2)妨碍集料与水泥浆很好粘结的物质;
(3)集料中本身性能较差或不安定的颗粒。
在细集料方面:一方面含泥量的增加,使其集料的比表面积随之增加,另一方面,含泥中粘土类矿物通常有较强的吸水性。固此,当混凝土用水量不变时,含泥量增加,混凝土坍落度损失将增加。在泥土包裹其集料的表面的情况下,当含泥量为1%~3%时对新拌混凝土坍落度的影响不明显。但当含泥量超过4%时,对新拌混凝土坍落度的影响明显增加。在粗集料方面:石粉含量对混凝土的坍落度影响相对小些。如果保持混凝土用水量不变时,石粉含量每增加2%,坍落度损失1cm。另一方面针状、片状集料对混凝土的流动性及坍落度有着十分显著的影响。针状、片状集料越多,混凝土的流动性越差。在相同混凝土用水量时流动性也就越小。针片状集料对混凝土流动性的影响可以归结为三方面原因:www.tmgc8.com
(1)含针状片状颗粒的集料一般孔隙率较大,使得集料的堆积密度降低。
(2)针状片状集料的比表面积较大,必然增加与水泥浆体的接触面积及表面需水量。
(3)针状片状集料在新拌浆体的运动阻力较大,在新拌浆体中由于针状片状集料相互支撑作用,阻碍其它集料颗粒的运动。同时,常常受到其他集料颗粒的阻碍。
3.2集料的吸水率对混凝土坍落度损失的影响
混凝土在拌制时如采用干集料,而且集料的吸水率较大的话,它可以从混凝土中吸取大量水分,使混凝土中的自由水分减少,导致混凝土坍落度减小。例如:在普通混凝土中,细集料用量大约为700kg/m3,粗集料用量大约为1100kg/m3。如集料的吸水率为1%,则细集料可吸取7kg水,粗集料可吸取11kg的水。若这一吸水过程在1h内完成,细集料就有可能使混凝土的坍落度在1h内损失20~30mm,对于粗集料也可作同样的考虑,他的吸水作用可使混凝土的坍落度损失达到40~50mm。若拌制混凝土时,粗细集料均为干料,可使混凝土的坍落度损失达到60~80mm甚至更多。由此可见,集料的吸水作用对混凝土的坍落度损失有不可忽略的影响。
3.3集料吸水速度对混凝土坍落度损失的影响。
如果集料吸水速度很快,吸水过程在搅拌阶段就已经基本完成,混凝土制成后,集料不表现出明显的吸水作用,因而也就不表现出明显的坍落度损失。此现象影响到的是混凝土单位用水量。如果集料的吸水速度很慢,在遇水后的短时间内仅吸附很少的水,大量的水分是在以后的一个较长时间内逐渐吸附的。此现象不仅影响到混凝土单位用水量,对混凝土坍落度损失也有影响,如集料的吸水主要集中在拌水后的1~2小时内,则会显著地影响混凝土坍落度的损失。在通常情况下,集料不与水反应,但它也可以由液体性质转变为固体性质。这就是集料颗粒对水的吸附性。由于集料表面吸附了一定数量的水,这部分水转变为固体性质,使具有液体性质的水减少,混凝土的流动性也就随之减小。因此,集料颗粒对水的吸附作用也导致混凝土坍落度损失。